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Outcome Program (GnSOP)

Bloodstream Infection Annual Report 2022

Jan M Bell, Alicia Fajardo Lubian, Sally R Partridge, Thomas Gottlieb, Jennifer Robson, Jonathan R Iredell, Denise A Daley, 
Geoffrey W Coombs

Abstract

The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence stud-
ies to monitor changes in antimicrobial resistance in selected enteric gram-negative pathogens. The 
2022 survey was the tenth year to focus on blood stream infections caused by Enterobacterales, and the 
eighth year where Pseudomonas aeruginosa and Acinetobacter species were included. Fifty-five hospi-
tals Australia-wide participated in 2022.

The 2022 survey tested 9,739 isolates, comprising Enterobacterales (8,773; 90.1%), P. aeruginosa (840; 
8.6%) and Acinetobacter species (126; 1.3%), using commercial automated methods. The results were 
analysed using Clinical and Laboratory Standards Institute (CLSI) and European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) breakpoints (January 2023). Key resistances included 
resistance to the third-generation cephalosporin ceftriaxone in 12.7%/12.7% (CLSI/EUCAST criteria) 
of Escherichia coli and in 6.6%/6.6% of Klebsiella pneumoniae complex. Resistance rates to ciprofloxa-
cin were 13.7%/13.7% for E. coli; 7.8%/7.8% for K. pneumoniae complex; 5.3%/5.3% for Enterobacter 
cloacae complex; and 4.3%/10.0% for P. aeruginosa. Resistance rates to piperacillin-tazobactam were 
2.8%/5.9%; 2.9%/8.7%; 18.3%/27.2%; and 6.1%/14.7% for the same four species, respectively. Twenty-
nine Enterobacterales isolates from 28 patients were shown to harbour a carbapenemase gene: 18 
blaIMP-4; four blaNDM-5; three blaNDM-1; one blaOXA-181; one blaOXA-244; one blaNDM-1 + blaOXA-181; and one 
blaNDM-5 + blaOXA-181. Transmissible carbapenemase genes were also detected among two Acinetobacter 
baumannii complex isolates (blaOXA-23) and one P. aeruginosa (blaNDM-1) in the 2022 survey.

Keywords: Australian Group on Antimicrobial Resistance (AGAR); antimicrobial resistance; bacte-
raemia; gram-negative; Escherichia coli; Enterobacter; Klebsiella

Introduction

Emerging resistance in common pathogenic 
members of the Enterobacterales is a world-wide 
phenomenon and presents therapeutic problems, 
both in the community and in hospital prac-
tice. The Australian Group on Antimicrobial 
Resistance (AGAR) commenced surveillance of 

the key gram-negative pathogens, Escherichia 
coli and Klebsiella species, in 1992. Surveys were 
conducted biennially until 2008 when annual 
surveys commenced, alternating between com-
munity- and hospital-onset infections.i In 2004 
Enterobacter, another genus of gram-negative 
pathogens in which resistance can be of clinical 

i  http://www.agargroup.org.au/agar-surveys.
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importance, was added. Escherichia coli is the 
most common cause of community-onset uri-
nary tract infection; Klebsiella species are less 
common but are known to harbour important 
resistances. Enterobacter species are less common 
in the community, but of high importance due 
to intrinsic resistance to first-line antimicrobials 
used in that setting. Taken together, these three 
groups of species surveyed are valuable sentinels 
for multi-resistance and emerging resistance 
in enteric gram-negative bacilli. In 2013 AGAR 
commenced the Enterobacterales Sepsis Outcome 
Program (EnSOP), which focused on the collec-
tion of resistance data and some demographic 
data on all isolates collected prospectively from 
patients with bacteraemia. In 2015, Pseudomonas 
aeruginosa and Acinetobacter species were added, 
with the program then referred to as the Gram-
negative Sepsis Outcome Program (GnSOP), 
since renamed the Gram-negative Surveillance 
Outcome Program.

Resistance to β-lactams due to β-lactamases, 
especially extended-spectrum β-lactamases that 
inactivate the third-generation cephalosporins 
normally considered reserve antimicrobials, is 
of particular interest. Also of interest is resist-
ance to agents important for treatment of serious 
infections, such as gentamicin and piperacillin-
tazobactam; to highly bioavailable oral agents 
such as ciprofloxacin; and to reserve agents such 
as meropenem.

The objectives of the 2022 surveillance program were:

•	 to	monitor	resistance	in	Enterobacterales,	
P. aeruginosa	and	Acinetobacter species	isolated	
from	blood	cultures	taken	from	patients	pre-
senting	to	the	hospital	or	already	in	hospital;

•	 to	examine	the	extent	of	co-resistance	and	mul-
tidrug	resistance	in	the	major	species;

•	 to	detect	emerging	resistance	to	reserve	agents	
such	as	carbapenems	and	colistin;	and

•	 to	examine	the	molecular	basis	of	resistance	to	
third-generation	cephalosporins,	quinolones	
and	carbapenems.

Methods

Study design

From 1 January to 31 December 2022, thirty-
three laboratories servicing 55 hospitals across 
Australia, including seven children’s hospitals 
and 13 regional or district hospitals from north-
west Western Australia, collected either all or up 
to 200 isolates from different patient episodes of 
bacteraemia.

Species identification

Species were identified using the routine 
method at each institution; Vitek®, Phoenix™ 
automated microbiology systems or, where 
available, matrix assisted laser desorption/
ionisation – time of flight (MALDI-ToF) mass 
spectrometry.

Susceptibility testing

Testing was performed by two commercial semi-
automated methods, Vitek® 2 (BioMérieux, 
France) or Phoenix™ (Becton Dickinson, 
USA), which are calibrated to the International 
Organization for Standardization (ISO) refer-
ence standard method of broth microdilution. 
Commercially available Vitek (AST-N246, AST 
N-435, AST N-410) or Phoenix NMIC-422 cards 
were utilised by all participants throughout the 
survey period. The CLSI M100 and EUCAST 
v13.1 breakpoints from January 2023 have been 
employed in the analysis.1,2

Multidrug resistance

The definitions used by Magiorakos et al. were 
applied in this survey,3 where multidrug resist-
ance (MDR) is defined as resistance to one or 
more agent in three or more antimicrobial cat-
egories. For each species, antimicrobials were 
excluded from the count if they are affected by 
natural resistance mechanisms.
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Whole genome sequencing

The following isolates were referred to a cen-
tral laboratory (Centre for Infectious Diseases 
and Microbiology, The Westmead Institute for 
Medical Research):

•	 E. coli,	Klebsiella	spp.,	Proteus	spp.	and	Sal-
monella	spp.	with	ceftazidime	or	ceftriaxone	
minimum	inhibitory	concentration	(MIC)	>	
1	mg/L,	or	cefoxitin	MIC	>	8	mg/L;

•	 any	other	Enterobacterales	with	cefepime	
MIC	>	1	mg/L;

•	 Salmonella	spp.	with	ciprofloxacin	MIC	>	
0.25	mg/L;

•	 all	Enterobacterales	with	meropenem	MIC	
>	0.125	mg/L	(>	0.25	mg/L	if	tested	using	
Vitek);

•	 all	P. aeruginosa	or	Acinetobacter	spp.	with	
meropenem	MIC	>	4	mg/L;

•	 all	isolates	with	amikacin	MIC	>	32	mg/L;

•	 and	all	isolates	with	colistin	MIC	>	4	mg/L	
(except	those	with	intrinsic	resistance	to	
colistin).

All referred isolates underwent whole genome 
sequencing (WGS).

Genomic DNA for WGS was extracted using 
the DNeasy® Blood & Tissue Kit (Qiagen) 
according to the manufacturer’s instruc-
tions for gram-negative bacteria. WGS was 
performed by the Antimicrobial Resistance 
Laboratory, Microbial Genomics Reference 
Laboratory, Centre for Infectious Diseases and 
Microbiology Laboratory Services (CIDMLS), 
Institute of Clinical Pathology and Medical 
Research (ICPMR), Westmead Hospital using 
the Illumina NextSeq™ 500 platform. Data were 
analysed using a modification of the Nullarbor 
bioinformatic pipeline,4 incorporating searching 

contigs against the NCBI AMRFinder databaseii 
using ABRicate5 and AMRFinder,6 followed by 
a custom AMR-specific pipeline which included 
a read-based search using ARIBA7 against the 
CARD8 and NCBI databases. Ambiguities and 
potential multiple gene copies/variants were 
checked manually by mapping reads to refer-
ence genesiii using Geneious.

Results

The species isolated, and the numbers of 
each, are listed in Table 1. Enterobacterales 
accounted for 90.1%, followed by P. aeruginosa 
(8.6%) and Acinetobacter species (1.3%). In the 
Enterobacterales, 86.7% of all isolates belonged 
to three genera—Escherichia (60.1%), Klebsiella 
(20.9%) and Enterobacter (5.7%). Major resist-
ances and non-susceptibilities for the top six 
ranked species are listed in Table 2. We utilised 
non-susceptibility as an epidemiological tool to 
provide important information about emerg-
ing acquired resistance, recognising that even 
though some of these isolates remain within 
therapeutic range for specific antibiotics, these 
isolates tend to be divergent from the wild-type 
distribution. In addition to resistant isolates, 
isolates categorised as ‘intermediate’ accord-
ing to CLSI were included as non-susceptible. 
Multiple acquired resistances by species are 
shown in Table 3. Almost one-quarter of E. coli 
isolates (23.4%), 8.0% of K. pneumoniae com-
plex isolates, and 8.4% of E. cloacae complex 
isolates would be considered multi-drug resist-
ant. A more detailed breakdown of resistance 
and non-susceptibility by state and territory is 
provided in the online GnSOP 2022 report.iv

Escherichia coli

The moderately high levels of resistance 
to ampicillin (and therefore amoxicillin) 
observed were at similar to levels in the 2021 
survey (2022: 50.0%/51.5%; versus 2021: 
51.4%/53.2%, CLSI/EUCAST criteria), with 

ii  https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047.

iii  https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/.

iv  https://agargroup.org.au/agar-surveys/.
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Table 1: Number and proportion of species isolated, blood cultures, AGAR, 2022

Onset setting, percentage (n)

Species Percentage (n) Community onset Hospital onset

Escherichia coli 54.1 (5,273) 82.5 (4,349) 17.5 (924)

Klebsiella pneumoniae complex 14.3 (1,395) 69.4 (968) 30.6 (427)

Pseudomonas aeruginosa 8.6 (840) 56.4 (474) 43.6 (366)

Enterobacter cloacae complex 4.9 (477) 52.4 (250) 47.6 (227)

Proteus mirabilis 3.3 (324) 82.4 (267) 17.6 (57)

Klebsiella oxytoca 3.0 (297) 66.0 (196) 34.0 (101)

Serratia marcescens 2.6 (257) 44.4 (114) 55.6 (143)

Klebsiella aerogenes 1.3 (130) 60.8 (79) 39.2 (51)

Morganella morganii 1.1 (110) 70.9 (78) 29.1 (32)

Citrobacter freundii complex 1.0 (97) 74.2 (72) 25.8 (25)

Salmonella species (non-typhoidal) 1.0 (97) 91.8 (89) 8.2 (8)

Citrobacter koseri 0.8 (80) 82.5 (66) 17.5 (14)

Acinetobacter baumannii complex 0.7 (70) 58.6 (41) 41.4 (29)

Salmonella species (typhoidal) 0.4 (38) 94.7 (36) 5.3 (2)

Raoultella ornithinolytica 0.3 (28) 78.6 (22) 21.4 (6)

Enterobacter speciesa 0.2 (23) 82.6 (19) 17.4 (4)

Providencia rettgeri 0.2 (19) 84.2 (16) 15.8 (3)

Acinetobacter lwoffii 0.2 (16) 81.3 (13) 18.8 (3)

Acinetobacter speciesa 0.2 (16) 75.0 (12) 25.0 (4)

Providencia stuartii 0.1 (13) 92.3 (12) 7.7 (1)

Acinetobacter ursingii 0.1 (12) 66.7 (8) 33.3 (4)

Pantoea agglomerans 0.1 (12) 66.7 (8) 33.3 (4)

Proteus hauseri 0.1 (11) 90.9 (10) 9.1 (1)

Hafnia alvei 0.1 (10) 70.0 (7) 30.0 (3)

Other species (total n = 36) 1.0 (94) 63.8 (60) 36.2 (34)

Total 9,739 74.6 (7,266) 25.4 (2,473)

a Species not determined

similar lower rates for amoxicillin-clavulanic 
acid (9.9%/– intermediate, 7.4%/– resistant). 
Non-susceptibility to third generation cepha-
losporins was also maintained versus 2021 
(ceftriaxone, 2022: 12.8%/12.7% versus 2021: 
12.6%/12.5%; ceftazidime, 2022: 5.9%/5.9% 
versus 2021: 6.3%/6.3%). An extended spectrum 
β-lactamase (ESBL) phenotype was significantly 
more prevalent among hospital-onset (HO) 
than community-onset (CO) episodes of E. coli 
(17.2% versus 13.8%, p < 0.01). Moderate levels 
of resistance to cefazolin (22.2%/22.2%) and 

trimethoprim–sulfamethoxazole (28.0%/27.9%) 
were detected. Ciprofloxacin non-susceptibility 
was found in 17.4%/17.4% of E. coli isolates, 0.8 
percentage points higher than the 2021 survey. 
Resistance to gentamicin (7.9%/8.3%), pipera-
cillin-tazobactam (2.8%/5.9%), and cefepime 
(2.1%/3.1%) was low. Ten isolates (0.2%) had 
elevated meropenem MICs (≥ 0.5 mg/L). For 
the isolates with an ESBL phenotype, cipro-
floxacin and gentamicin resistance was found 
in 50.4%/50.4% and 29.9%/30.7% respectively.
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Most of the referred E. coli with an ESBL phe-
notype (664/703; 94.5%) harboured an Ambler 
class A ESBL gene (546/664, 82.2%); a plasmid 
borne class C gene (pAmpC) (95/664; 14.3%); or 
a carbapenemase gene (2/664; 0.3%) alone, or 
both an ESBL and pAmpC gene (16/664; 2.4%), 
or both a carbapenemase gene and an ESBL 
(4/664; 0.6%), or both a carbapenemase gene 
and pAmpC gene (1/664, 0.2%). The dominant 
β-lactamase genes in E. coli were blaCTX-M types, 
as found previously. Of 664 E. coli isolates with 
a confirmed βlactamase gene, 563 (84.8%) had 
one or more blaCTX-M genes detected by WGS, 
either blaCTX-M group 1 (n = 290); blaCTX-M group 
9 (n = 272); or a blaCTX-M group 1/9/1 hybrid 
(n = 1). Of 112 E. coli isolates with pAmpC, 
62 (55.4%) harboured blaDHA-1; 49 (43.8%) 
harboured a blaCMY-2-like gene; and one (0.9%) 
harboured both blaDHA-1 and a blaCMY-42 gene.

Klebsiella pneumoniae complex

K. pneumoniae complex isolates showed slightly 
higher levels of resistance to piperacillin-
tazobactam than did E. coli, but showed lower 
rates of resistance to amoxicillin-clavulanic 
acid, cefazolin, ceftriaxone, ciprofloxacin, gen-
tamicin, and trimethoprim-sulfamethoxazole. 
An ESBL phenotype was higher among HO 
than CO episodes (12.7% versus 5.3%, p < 0.01). 
Sixteen K. pneumoniae complex isolates (1.1%) 
had elevated meropenem MICs (see below). 
Most of the referred K. pneumoniae complex 
isolates with an ESBL phenotype (88/100; 
88.0%) harboured an ESBL gene (72; 81.8%), a 
pAmpC gene (7; 8.0%), or a carbapenemase gene 
(3, 3.4%) alone; or an ESBL and pAmpC gene 
(1; 1.1%); or a carbapenemase gene coproduced 
with either an ESBL or pAmpC gene ESBL 
(5; 5.7%). The majority of ESBL genes (70/83; 
84.3%) were blaCTX-M types, mostly blaCTX-M 
group 1 (64/70; 91.4%). K. pneumoniae complex 
isolates harboured either blaDHA-1 (8/10, 80.0%) 
or blaCMY-2-like genes (2/10).

Enterobacter cloacae complex

Acquired resistance was common among E. cloa-
cae complex isolates, to piperacillin-tazobactam 
(18.3%/27.2%); ceftriaxone (28.4%/28.4%); and 

ceftazidime (24.6%/28.2%). There was a mod-
erate level of resistance to trimethoprim–sul-
famethoxazole (17.6%/17.6%); cefepime, cipro-
floxacin and gentamicin resistance all remained 
at less than 10%. Although E. cloacae complex 
isolates are generally more resistant than E. coli 
to β-lactam antimicrobials, resistance rates to 
non-β-lactams tend to be lower. Twenty-three 
E. cloacae complex isolates (4.8%) had elevated 
meropenem MICs.

Carbapenemase genes

Overall, 32 isolates (31 patients) from 18 hos-
pitals from six states/territories were found 
to harbour a carbapenemase gene. Eighteen 
isolates harboured blaIMP-4: E. cloacae complex 
(n = 9), K. pneumoniae (n = 5), Serratia marc-
escens (n = 3) and E. coli (n = 1). Other types 
detected in Enterobacterales were blaNDM (n = 7), 
blaNDM + blaOXA-181 (n = 2), blaOXA-181 (n = 1), 
and blaOXA-244 (n = 1) genes. The blaOXA-23 gene 
was detected in two Acinetobacter baumannii 
complex isolates, and blaNDM-1 was detected in 
one P. aeruginosa isolate. No blaKPC genes were 
detected in the 2022 survey.

Plasmid-borne colistin determinants

The only mobile colistin resistance (mcr) genes 
detected among referred isolates were mcr-9 
and mcr-1, almost all in E. cloacae complex 
isolates (16/17). No other resistance genes were 
identified in almost one-half (8/17, 47.1%) of the 
isolates with an mcr gene.

Discussion

AGAR has been tracking resistance in sentinel 
enteric gram-negative bacteria since 1992. From 
2008, surveillance was separated into hospital-
onset versus community-onset infections. The last 
year of hospital-onset only surveillance was 2011.9 
In 2013, the first survey of antimicrobial resistance 
among Enterobacterales isolates from bacteraemic 
patients throughout Australia was conducted 
using an approach similar to the European EARS-
Net program.10 The 2022 survey was the tenth of 
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antimicrobial resistance among Enterobacterales, 
and the eighth for P. aeruginosa and Acinetobacter 
spp. from bacteraemic patients through Australia.

The percentages of resistant E. coli in 2022 were 
similar to those seen in 2021 for all antimicrobial 
agents tested, except for ciprofloxacin, where it 
increased from 12.3% in 2021 to 13.7% in 2022. 
For K. pneumoniae complex, the percentage of 
resistant isolates in 2022 was similar to that seen 
in 2021 for all antimicrobials.

AGAR data show a longitudinal trend of increas-
ing E. coli resistance to key anti-gram-negative 
antimicrobial agents, such as ceftriaxone and 
ciprofloxacin. Resistance to both agents stabi-
lised in 2018 to 2020 (ceftriaxone 13.3–13.4%, 
ciprofloxacin 15.2–16.1%); the level of resistance 
declined to 12.5% and 12.3% respectively in 2021. 
In 2022, the level of resistance remained stable 
(12.7% and 13.7%). The steady rise in resistance 
to fluoroquinolones in E. coli is more striking in 
hospital-onset bacteraemia, with a change from 
13.7% to 19.8% between 2013 and 2018, to 21.3% 
in 2019, and to 21.8% in 2020. In 2021, the level of 
resistance fell to 16.7%, and it increased slightly to 
17.8% in 2022. In K. pneumoniae complex isolates, 
rates of resistance to ciprofloxacin were lower than 
for E. coli. Resistance in K. pneumoniae complex 
isolates peaked in 2018–2019 at 11.0% and 10.2%, 
falling to 7.2% in 2021, and was 7.8% in 2022.

Carbapenem resistance attributable to acquired 
carbapenemase genes is still uncommon in 
patients with bacteraemia in Australia. blaIMP-4 
accounted for 62.1% (18/29) of all carbapenemase-
producing Enterobacterales (CPE) in 2022, and 
half of the blaIMP-4 genes were found in E. cloacae 
complex isolates. Compared with many other 
countries in our region, antimicrobial resistance 
rates in Australian gram-negative bacteria are still 
relatively low,11,12 but similar to those observed in 
2021 in many Northern European countries.13,14 
Resistance to third generation cephalosporins 
in E. coli from bacteraemic patients in Australia 
is similar to the European Union and European 
Economic Area average.14 Although we see rates of 
ceftriaxone and ciprofloxacin resistance in E. coli 
that parallel Northern Europe, rates in Klebsiella 

pneumoniae are lower in Australia, compared to 
rates of resistance > 25% in parts of Europe. Some 
of this is explained by the relatively greater predis-
position for Klebsiella species to carry carbapen-
emase types found in Europe (such as KPC) and 
to the unregulated fluoroquinolone use in Europe 
compared to Australia where this antimicrobial 
class has been under greater usage scrutiny and 
regulation. Nonetheless, this illustrates the poten-
tial for greater rises in resistance rates over time 
and the need for ongoing surveillance.

Just under one-fifth of E. coli would be classed as 
MDR, a proportion little changed from the 2021 
survey. The proportion of K. pneumoniae complex 
isolates classed as MDR fell from 9.9% in 2019 
and 2020 to 6.2% in 2021 and remained at 6.3% 
in 2022.

The impact of the SARS-CoV-2 pandemic on anti-
microbial resistance remains unclear. Australian 
borders were closed to international travellers and 
Australians from March 2020 until November 
2021. Imported antimicrobial resistance via trav-
ellers and returning residents has always been an 
important source of resistant isolates, in particular 
Enterobacterales. Such border closures are likely to 
have resulted in decreased introduction of resist-
ant clones into Australia. During the pandemic 
antibiotic usage in the community decreased sig-
nificantly (possibly due to limited access to general 
practitioners); this may be another contributing 
factor to the declining resistance rates. Compared 
to previous AGAR surveys, there was an increase 
in the number of blaNDM genes reported from 
patients with bacteraemia in 2022. This may be 
due to the return of international travel.

Increasing awareness of and utilization of antimi-
crobial stewardship, as part of the National Safety 
and Quality Health Service Standards implemen-
tation and accreditation Australia-wide,15 may 
have reduced some resistance, particularly against 
ESBLs.

Future AGAR surveys will help determine if the 
observed reduction in resistance rates is sustained.
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