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Abstract

Introduction

Pathogens can enter the drinking water supply and cause gastroenteritis outbreaks. Such events can 
affect many people in a short time, making them a high risk for public health. In Australia, the 
Victoria State Government Department of Health is deploying a syndromic surveillance system for 
drinking water contamination events. We assessed the utility of segmented regression models for 
detecting such events and determined the number of excess presentations needed for such methods 
to signal a detection.

Methods

The study involved an interrupted time series study of a past lapse in water treatment. The baseline 
period comprised the four weeks before the minimum incubation period of suspected pathogens, 
set at two days post-event. The surveillance period comprised the week after. We used segmented 
linear regression to compare the count of gastroenteritis presentations to public hospital emergency 
departments (EDs) between the surveillance and baseline periods. We then simulated events result-
ing in varying excess presentations. These were superimposed onto the ED data over fifty different 
dates across 2020. Using the same regression, we calculated the detection probability at p < 0.05 for 
each outbreak size.

Results

In the retrospective analysis, there was strong evidence for an increase in presentations shortly after 
the event. In the simulations, with no excess presentations (i.e., with the ED data as is) the models 
signalled 8% probability of detection. The models returned 50% probability of detection with 28 
excess presentations and 100% probability of detection with 78 excess presentations.

Conclusions

The transient increase in presentations after the event may be attributed to microbiological hazards 
or increased health-seeking behaviour following the issuing of boil water advisories. The simulations 
demonstrated the ability for segmented regressions to signal a detection, even without a large excess 
in presentations. The approach also demonstrated high specificity and should be considered for 
informing Victoria’s syndromic surveillance system.

Keywords: Drinking water contamination; syndromic surveillance; waterborne disease outbreaks.
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Introduction

In drinking water contamination events, patho-
gens, such as Shiga toxin-producing Escherichia 
coli (STEC) and Cryptosporidium, can cause 
outbreaks of acute gastroenteritis.1–3 Such out-
breaks can affect many people in a short time, 
making them a high risk for public health.4 
Recognising and responding to such outbreaks 
quickly can therefore mitigate downstream 
morbidity and mortality, and associated costs.5,6 
In the cryptosporidiosis outbreak in Milwaukee, 
Wisconsin in 1993, for example, up to 85% of 
the 403,000 cases could have been avoided had 
surveillance systems detected it earlier.7

One avenue for early detection is syndromic 
surveillance. Syndromic surveillance uses pre-
clinical and clinical pre-diagnostic data, and 
proxy measures, such as hospital admission 
reports and over-the-counter pharmaceuti-
cal sales, to identify potential outbreaks.8–11 
Syndromic surveillance can therefore detect 
outbreaks earlier than surveillance systems that 
rely on laboratory-confirmed cases.5,6 In the 
Milwaukee outbreak, for example, calls to nurse 
hotlines reported a fourfold increase in diar-
rhoeal disease; this was observed one day before 
local pharmacists noticed that over-the-counter 
anti-diarrhoeal drugs were selling out, and five 
days before the local public health unit was noti-
fied of a potential outbreak.12,13 Although the 
impetus for the initial expansion of syndromic 
surveillance was for bioterrorism preparedness, 
the Milwaukee event demonstrated the utility of 
the approach for detecting waterborne disease 
outbreaks.14

In Australia, reports of waterborne gastroen-
teritis outbreaks are rare.15 Most Australians 
are supplied with potable water by retail water 
corporations. This water is often disinfected, 
which, together with filtration, is credited with 
substantial reductions in waterborne disease.16 
Disinfection reduces the risk of microbial con-
taminants that may enter the supply through 
point sources of pollution (e.g., human and 

industrial waste discharges) and diffuse sources 
(e.g., agricultural and animal husbandry 
activities).17

In Victoria, water agencies are required to notify 
the Victorian State Government Department 
of Health of any known or suspected con-
tamination events pursuant to Sections 18 
or 22 of the Safe Drinking Water Act 2003 
(Victoria). Following such events, the Victorian 
Department of Health may issue boil water 
advisories; these are public announcements 
advising that drinking water should be boiled 
(or otherwise disinfected) prior to consumption 
until the issue is rectified.17

One example of a drinking water contamination 
event occurred in 2020, when a storm caused a 
power outage, which then caused a generator to 
fail. Undisinfected water subsequently entered 
the water distribution zones of the two affected 
water agencies, resulting in the issuing of boil 
water advisories. Although there is little evi-
dence that this event, or any other recent events, 
resulted in outbreaks, preparedness for future 
outbreaks is important to avoid situations like 
the Milwaukee event.

Given this, the Victorian Department of Health 
is building its capacity for the syndromic 
surveillance of such events by using rapidly 
acquired but non-specific information on 
gastroenteritis presentations to public hospital 
emergency departments (EDs). This system 
will consider incorporating inferential statis-
tics to help signal the occurrence of potential 
outbreaks. One potential analytical approach 
is interrupted time series segmented regression 
analysis, a powerful statistical method typically 
used to evaluate policy interventions.18 In this 
paper, we adapted this approach to the study 
of drinking water contamination events, which 
can similarly affect a large population.

By retrospectively analysing the 2020 event, we 
aimed to answer the following question: What 
is the utility of applying interrupted time series 
segmented regression analysis for detecting 
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excess gastroenteritis presentations to public 
hospital EDs following a drinking water con-
tamination event?

Given there is little evidence of recent events 
resulting in outbreaks, we then simulated out-
breaks of various sizes to answer the following 
question: What number of excess presentations 
to public hospital EDs are needed for such 
methods to statistically signal a detection?

Methods

Study design

This study involved an ecological time series 
study of secondary panel data stratified by post-
code and days.

Study setting

The study population included all people resi-
dent in the affected Victorian postcodes for the 
period from 1 January 2020 to 31 December 
2020.

Data sources and measurements

Shapefiles of the various water distribution 
zones were provided by each water agency. By 
layering these zones over Victorian postcodes, 
we determined which postcodes are served by 
which agencies (Figure 1). Because some post-
codes are served by multiple agencies, or only 
partially served by an agency, we defined two 
different analyses:

•	 An ‘inclusive’ option, where postcodes are 
considered part of a zone if they are served at 
least in part by a water agency; and

•	 A ‘core’ option, where postcodes are consid-
ered part of a zone if they are only served by 
a water agency, and wholly served by that 
agency.

Of note, not all postcodes are served by a water 
agency. And of those that are, not all areas in 
that postcode are connected to the network. 

Unserved populations commonly access their 
drinking water from bores, wells, and rainwater 
collections.

ED presentations were retrieved from the 
Victorian Emergency Minimum Dataset 
(VEMD), which is updated daily by health ser-
vices and includes de-identified demographic, 
administrative and clinical data detailing 
presentations at Victorian public hospital EDs. 
VEMD data are subject to a validation process, 
which includes checks for valid values and 
compliance with VEMD business rules. The 
Victorian Department of Health also performs 
monthly data quality checks on ED-only admis-
sions, overlapping ED presentation times and 
admission times, and VEMD length of stays of 
over 24 hours. Health services are required to 
correct the data where anomalies are detected.

Residential addresses for each VEMD presenta-
tion were mapped to their corresponding water 
distributions zones. Gastroenteritis presenta-
tions were identified using diagnosis fields that 
included an ICD-10 code with the prefix ‘A0’, 
which were assigned by clinical coders at each 
health service.

Interrupted time series analysis

Suspected contamination event

The dataset was restricted to those postcodes 
served by the affected water agencies for both 
the ‘inclusive’ and ‘core’ definitions described 
above.

The baseline period was defined as the four 
weeks before the minimum incubation period of 
pathogens commonly implicated in such events, 
like Cryptosporidium and STEC;19,20 this was set 
at two days post-event. The surveillance period 
was defined as the week after that minimum 
incubation period. Interrupted time series anal-
ysis was used to test the hypothesis that the count 
of gastroenteritis presentations was different 
between the baseline and surveillance periods. 
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The following segmented linear regression 
model was used for our interrupted time series 
analysis:

Yt = β0 + β1T + β2Xt + β3TXt

This model required three key variables:

•	 T: the days since the start of the study period.

•	 Xt: a dummy variable indicating the baseline 
(coded 0) and surveillance (coded 1) peri-
ods.

•	 Yt: the outcome at time t, i.e., gastroenteritis 
presentations to public hospital EDs.

Upon entering these variables into the model, we 
retrieved the following coefficients for analysis:

•	 β0: the constant, i.e., the value at which the 
regression crosses the y-axis.

•	 β1: the baseline trend, i.e., the change in 
presentations with a time unit increase in the 
baseline period.

•	 β2: the level change, i.e. the immediate 
change in presentations in the surveillance 
period compared to the baseline period; this 
coefficient can signal a point-source out-
break.

•	 β3: the slope change, i.e. the change in the 
regression gradient of the surveillance period 
compared to the baseline period; this coef-
ficient can signal a continuous-source out-
break.

Simulated outbreaks

To help interpret negative and positive results of 
future analyses, we simulated single-day water 
contamination events causing point-source 
outbreaks of log-normal distribution, resulting 
in varying numbers of excess gastroenteritis 
presentations to public hospital EDs (Figure 2). 
Given there is little evidence of recent events 
leading to outbreaks, these excess presentations 

were then superimposed onto the existing 
VEMD data for the same postcodes as in the 
previous analysis, but over a different date. We 
reran the same segmented regression model 
and used p < 0.05 for the β2 coefficient to signal 
a detection. We repeated this process for 50 dif-
ferent dates across 2020 and calculated the pro-
portion of positive detections for each outbreak 
size simulated in Figure 2.

Results

Suspected contamination event

The ‘inclusive’ analysis included 237 postcodes 
and 521 gastroenteritis presentations over the 
study period, with a median of 14 (and a range 
of eight to 24) presentations per day. In the 
regression, there were approximately 15 presen-
tations at the beginning of the study (β0 = 15.52, 
p < 0.001), with little evidence for a change in 
rate across the baseline period (β1 = -0.08, p = 
0.33). There was very strong evidence for a level 
change in approximately 11 additional presen-
tations immediately following the minimum 
incubation period of suspected pathogens (β2 = 
10.94, p < 0.001), with strong evidence showing 
a subsequent decrease in presentations over the 
surveillance week (β3 = -1.67, p = 0.02) (Figure 3).

The ‘core’ analysis included 97 postcodes and 
234 presentations over the study period, with a 
median of six (and a range of two to 17) presen-
tations per day. In the regression, the start of the 
study period saw approximately seven presenta-
tions (β0 = 6.56, p < 0.001), with little evidence 
for a change in rate across the baseline period 
(β1 = -0.03, p = 0.68). There was strong evidence 
for an immediate increase in presentations 
following the minimum incubation period of 
suspected pathogens (β2 = 7.39, p = 0.01), and 
some evidence to show a subsequent decrease in 
presentations over the surveillance week (β3 = 
-1.04, p = 0.07) (Figure 3).

Simulated outbreaks

Over fifty runs of the simulated outbreaks for the 
‘inclusive’ analysis, with no excess presentations 
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(i.e., with the ED data as is) the models signalled 
a detection 8% of the time. With 28 excess pres-
entations, the models returned detections 50% 
of the time; with 78 excess presentations, detec-
tions were returned 100% of the time (Table 1). 
For the ‘core’ analysis, with no excess presenta-
tions, the models signalled a detection 6% of the 
time. The models returned over 50% detections 
with 21 excess presentations, and 100% detec-
tions with 45 excess presentations (Table 1).

Discussion

This study demonstrated the utility of applying 
segmented regression analysis to an interrupted 
time series study of gastroenteritis presenta-
tions to public hospital EDs before and after 
a suspected drinking water contamination 
event. We also simulated outbreaks of various 
sizes given the absence of recent events leading 

to outbreaks, and demonstrated the ability of 
segmented regressions to statistically signal a 
detection, even without a large excess in pres-
entations. Our study therefore supports the use 
of interrupted time series analysis for inform-
ing Victoria’s syndromic surveillance system for 
such events in conjunction with timely public 
hospital ED data.

In this study, the suspected contamination 
event saw a transient increase in presentations, 
but indicator microorganisms were undetected 
in samples taken from the affected waterbod-
ies. We recognise there are limitations to 
monitoring extensively for specific pathogens 
in large water distribution networks, like those 
implicated in this event. It therefore remains 
possible that this increase in presentations 
was the result of to microbiological hazards. 

Figure 2: Simulated point-source outbreaks of Shiga-toxin producing Escherichia coli following 
a single-day water contamination event resulting in excess gastroenteritis presentations to public 
hospital emergency departmentsa

a	 Each line represents a different simulation. In ascending order, the number of excess presentations in each simulation are: 1, 3, 6, 10, 15, 

21, 28, 36, 45, 55, 66 and 78.
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Alternatively, our findings may be ascribed to 
increased health-seeking behaviour following 
the issuing of boil water advisories.3

In our simulations, the segmented regressions 
also signalled detections when applied to other 
dates in the VEMD, a likely consequence of 
random error.21 Reassuringly, the false-positive 
rate was less than 10% for both the ‘inclusive’ 
and ‘core’ analyses. Given its high specificity, a 
positive detection is therefore likely suggestive 
of a waterborne disease outbreak. Its sensitiv-
ity, i.e., its true-positive detection rate, was 
dose-dependent. This is consistent with other 
syndromic surveillance approaches that use 
health insurance data, telephone triage and 
over-the-counter pharmacy sales.8,22

Of note, our study period occurred during the 
COVID-19 pandemic. ED presentations likely 
fluctuated with stay-at-home orders, which may 
have introduced additional noise to the rates of 
gastroenteritis presentations. By restricting the 
baseline period to four weeks, we were able to 
retain sufficient data to establish a robust base-
line, while minimising the impact of variable 
lockdowns and seasonal variability.

We also want to highlight that our analyses 
focused on p-values to signal a detection. We 
note that a statistical signal at p < 0.05 may not 
have public health significance. Such analyses 
should therefore be used in conjunction with 
microbiological testing and consultation with 
key stakeholders (including waterborne and 
foodborne disease experts) to inform public 
health decision making.

Our analyses did have some limitations. Firstly, 
gastroenteritis syndromes were identified using 
ICD-10 codes, which can be subject to misclas-
sification. Similarly, there is likely misclassifica-
tion in how we determined which postcodes are 
served by which water sources. The ‘inclusive’ 
definition will have captured all affected post-
codes, with the drawback being the inclusion 
of unaffected populations in sections served by 
other zones. The ‘core’ definition has the advan-
tage of restricting analyses to postcodes com-
pletely affected by the event, at the expense of 
excluding affected postcodes served additionally 
by other zones. The misclassification in ICD-10 
codes and postcodes are likely non-differential 
between the baseline and surveillance periods, 
thus biasing the effect estimates towards the 
null. As such, the sensitivity estimates of our 
models are likely minimum estimates of the 
true value.

Furthermore, some people may have ingested 
water in the affected postcodes, but may have 
become ill in another, thereby reducing case 
ascertainment. This was minimised by the pres-
ence of stay-at-home orders during the study 
period. We recognise that this remains a limita-
tion if used for syndromic surveillance during 
non-lockdown contexts.

Our simulation was also run over 50 different 
dates across 2020; the results may therefore 
lack precision and may benefit from additional 
runs. Furthermore, all simulations were mod-
elled after single-day water contamination 
events leading to point-source outbreaks of 
STEC. Therefore, our findings may not be 

Table 1: Probability of detection in an interrupted time series study of gastroenteritis 
presentations to public hospital emergency departments (EDs) before and after simulated 
outbreaks of various sizes in affected postcodes in Victoria, Australia, 2020a

Excess presentations to public hospital EDs (n) 0 1 3 6 10 15 21 28 36 45 55 66 78

Proportion detected for the ‘inclusive’ analysisb 8% 8% 10% 18% 24% 32% 44% 50% 58% 76% 88% 94% 100%

Proportion detected for the ‘core’ analysisc 6% 10% 14% 20% 36% 44% 60% 78% 88% 100% 100% 100% 100%

a	 Details of the simulated outbreaks and resultant excess presentations are given in Figure 2.

b	 Includes postcodes that are served at least in part by the affected sources.

c	 Includes postcodes that are only served, and wholly served, by the affected sources.
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generalisable to outbreaks with different char-
acteristics. Future simulations could incorpo-
rate other pathogens and other outbreak types, 
including continuous-source outbreaks, to bet-
ter assess the model’s sensitivity and specificity. 
Future studies could also explore the utility 
of interrupted times series analysis applied to 
other outcome data, such as telephone triage, 
web-based queries, and over-the-counter phar-
maceutical sales.8

In closing, this study demonstrated the utility 
of interrupted time series analysis for the early 
detection of waterborne disease outbreaks when 
used in conjunction with timely public hospital 
ED data. This approach should therefore be 
considered for informing Victoria’s syndromic 
surveillance system for monitoring and evaluat-
ing such events.
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